0%

「BZOJ 4316」小C的独立集

BZOJ 4316

题意

你有一棵边仙人掌,求最大点独立集

\(n\le5*10^4,m\le6*10^4\)


分析

考虑树上的情形,令\(f[i][0/1]\)表示第i个点不选/选时,以i为根的子树的最大点独立集

\[ \begin{align} f[i][0]&=\sum_{v\in son_i}max(f[v][0],f[v][1])\\ f[i][1]&=1+\sum_{v\in son_i}f[v][0] \end{align} \]

对仙人掌建圆方树,在圆点处如上转移。

在处理方点\(u\)时,为了使圆点转移不变,重新定义\(f[u][0/1]\)表示\(u\)的父亲(环里深度最小的点)选/不选时,以\(u\)为根的子树的最大点独立集。

暴力讨论\(u\)的父亲选/不选,环上dp即可

复杂度\(\mathcal O(n)\)


代码

需要-std=c++11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include<cstdio>
#include<algorithm>
#include<ctype.h>
#include<string.h>
#include<math.h>

using namespace std;
#define ll long long

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
return (s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin), (s == t ? -1 : *s++) : *s++);
}
template<class T>
inline void read(T &x) {
static bool iosig;
static char c;
for (iosig = false, c = read(); !isdigit(c); c = read()) {
if (c == '-') iosig = true;
if (c == -1) return;
}
for (x = 0; isdigit(c); c = read()) x = ((x + (x << 2)) << 1) + (c ^ '0');
if (iosig) x = -x;
}
const int OUT_LEN = 10000000;
char obuf[OUT_LEN], *ooh = obuf;
inline void print(char c) {
if (ooh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), ooh = obuf;
*ooh++ = c;
}
template<class T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) print('0');
else {
if (x < 0) print('-'), x = -x;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
while (cnt) print((char)buf[cnt--]);
}
}
inline void flush() { fwrite(obuf, 1, ooh - obuf, stdout); }

const int N = 50005, M = 60005;
int n, m, num=1, cnt, top, p, dfn[N], low[N], stk[N], h[N], f[N][2], e[M<<1], pre[M<<1];
vector<int> E[N<<1];
inline void add(int x, int y){ e[++num]=y, pre[num]=h[x], h[x]=num;}
void tarjan(int u, int fa=0){
dfn[u]=low[u]=++cnt;
stk[++top]=u;
for(int i=h[u]; i; i=pre[i]) if(i!=fa)
if(!dfn[e[i]]){
tarjan(e[i], i^1), low[u]=min(low[u], low[e[i]]);
if(dfn[e[i]]==low[e[i]]) E[u].push_back(e[i]);
}
else if(dfn[e[i]]<dfn[u]){
low[u]=min(low[u], dfn[e[i]]);
E[e[i]].push_back(++p);
for(int j=top; stk[j]!=e[i]; --j) E[p].push_back(stk[j]);
}
--top;
}
void dfs(int u){
for(int v:E[u]) dfs(v);
if(u<=n){
f[u][1]=1;
for(int v:E[u]) f[u][0]+=max(f[v][0], f[v][1]), f[u][1]+=f[v][0];
}
else{
static int g[2], gg[2];
g[0]=-1e9, g[1]=0;
for(int v:E[u]) gg[0]=max(g[0], g[1])+f[v][0], gg[1]=g[0]+f[v][1], swap(g, gg);
f[u][0]=g[0];
g[0]=0, g[1]=-1e9;
for(int v:E[u]) gg[0]=max(g[0], g[1])+f[v][0], gg[1]=g[0]+f[v][1], swap(g, gg);
f[u][1]=max(g[0], g[1]);
}
}
int main() {
read(n), read(m), p=n;
for(int i=1; i<=m; ++i){
static int x, y;
read(x), read(y);
add(x, y), add(y, x);
}
tarjan(1), dfs(1);
return printf("%d", max(f[1][0], f[1][1])), 0;
}